

Scientific Cluster Support Project

2003-2004 Activities, Challenges, and Results

Gary Jung SCS Project Manager

January 7, 2005

The need for Computing

- Why is scientific computing so important to our researchers?
 - Traditional methods
 - Theoretical approach
 - Experimental approach
 - Computational approach is now recognized as important tool in scientific research
 - Data analysis
 - Large scale simulation and modeling of physical or biological processes

A Brief History of Computing at Berkeley Lab

- The 1970's and early 1980's Central computing
 - CDC 6000 and 7600 Supercomputers
- The 1980's Minicomputers
 - Digital Equipment Corp VAX and 8600 series systems
 - Interactive timesharing computing
- The 1990's Distributed networked computing
 - Computing at the desktop
 - Institutional central computing fades away
 - The "Gap"
- 2000 Linux cluster computing starts to emerge at Berkeley Lab

What is a Linux cluster?

- Commodity Off The Shelf (COTS) parts
- Open source software (Linux)
- Single master/multiple slave(compute) node architecture
 - External view of the cluster is as a single unit for
 - managing, configuration, communication
 - Organized dedicated network communication among nodes
- Similar or identical software running on each node
- Job scheduler
- Parallel programming software Message Passing Interface (MPI)

Scientific Cluster Support Project Initiated

- 2002 MRC Working Group recommends that ITSD provide support for Linux Clusters.
- December 2002 SCS Program approved
 - \$1.3M Four-year program started January 2003
 - Ten strategic science projects are selected
 - Projects purchase their own Linux clusters
 - ITSD provides consulting and support

Strategy

- Use proven technical approaches that enable us to provide production capability
- Adopt standards to facilitate scaling support to several clusters

Goals

- More effective science
- Enable our scientists to use and take advantage of computing
- HPC that works. Avoid lost time and expensive mistakes

Participating Science Projects

Chemical Sciences	PI: William Miller	Semiclassical Molecular Reaction Dynamics: Methodological Development and Application to Complex Systems	40 Intel Xeon processors
Chemical Sciences	PI: Martin Head- Gordon	Parallel electronic structure theory	42 AMD Opteron processors
Chemical Sciences	PI: William Lester	Quantum Monte Carlo for electronic structure	46 AMD Athlon processors
Materials Sciences	PI: Arup Chakraborty	Signaling and Mechanical Responses Due to Biomolecular Binding	96 AMD Athlon processors
Material Sciences	PI; Steve Louie Marvin Cohen	Molecular Foundry	72 AMD Opteron processors
Physical Bioscience	PI/Contact: Kim/Adams/ Brenner/Holbrook	Structural Genomics of a Minimal Genome Computational Structural & Functional Genomics A Structural Classification of RNA Nudix DNA Repair Enzymes from Deinococcus radiodurans	60 Intel Xeon processors
Environmental Energy Technologies	PI: Gadgil/Brown	Airflow and Pollutant Transport in Buildings Regional Air Quality Modeling Combustion Modeling	24 AMD Athlon processors
Earth Sciences	PI: Hoversten/Majer	Geophysical Subsurface Imaging	50 Intel Xeon processors
Life Sciences	PI: Michael Eisen	Computational Analysis of cis-Regulatory Content of Animal Genomes	40 Intel Xeon processors
Life Sciences	PI: Cooper/Tainer	Protein Crystallography and SAXS data Analysis for Sibyls/SBDR	20 Intel Xeon processors
Nuclear Sciences	PI: I-Yang Lee	Gretina Detector - Signal deposition and event reconstruction	16 AMD Opteron processors

Past Challenges

Scheduling

- Funding availability
- Variance in customer readiness

Security

- Export control
- One-time password tokens
- Firewall

Software

- Licensing LBNL developed software
- Red Hat Enterprise Linux

Accomplishments

- 14 clusters in production
 - 10 SCS funded, 3 fully recharged, 1 ITSD test cluster
 - 698 processors online
- Warewulf cluster software
 - Standard SCS cluster distribution
 - University of Kentucky KASY0 supercomputer
- ITSD at Supercomputing 2003
- Enabling science
 - Chakraborty T-cell discovery Oct 2003
 - Lester INCITE work on Photosynthesis Nov 2004

Accomplishments

- Driving down costs
 - Standardization of architecture and toolset
 - Outsourcing of various pieces
 - Develop lower cost staff
 - Competitive bid procurement
 - About 10% savings
 - Benchmarking costs
 - Comparison to postdocs
 - Comparison to other Labs

Factors to our Success

- Initial funding was key to get started
- Prominent scientists were our customers
- Talented, motivated staff
 - Creative, but focused on production use
 - Development of technical depth
- Adherence to standards
- Supportive Steering Committee
- Positive feedback

New Challenges

- Larger systems
 - Scalability issues e.g. parallel filesystems
 - Moving up the technology curve Infiniband, PCI Express
 - Assessing integration risks
- Increasing cluster utilization
- Harder problems to debug
- Charting path forward

What's next?

- Upcoming projects
 - Earth Sciences 256 processor cluster Spring 2005
 - Molecular Foundry 256 processor cluster Dec 2005
 - Gretina 750 processor cluster 2007
- Follow-on to SCS
 - SCS approach vs. large institutional cluster
 - Grids

Clusters #1 and #10

PI: Arup Chakraborty Materials Sciences Division

96 AMD 2200+ MP processors 48 GB aggregate memory 1 TB disk storage Fast Ethernet interconnect 345 Gflop/s (theoretical peak)

PI: Steve Louie and Marvin Cohen MSD Molecular Foundry

72 AMD Opteron 2.0 Ghz 64-bit processors 72 GB aggregate memory 2 TB disk storage Myrinet interconnect 288 Gflop/s (theoretical peak)

Installation

